Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.858
Filtrar
1.
Environ Microbiol ; 26(4): e16614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570900

RESUMO

Sustainable crop protection is vital for food security, yet it is under threat due to the adaptation of a diverse and evolving pathogen population. Resistance can be managed by maximising the diversity of selection pressure through dose variation and the spatial and temporal combination of active ingredients. This study explores the interplay between operational drivers for maximising the sustainability of management strategies in relation to the resistance status of fungal populations. We applied an experimental evolution approach to three artificial populations of Zymoseptoria tritici, an economically significant wheat pathogen, each differing in initial resistance status. Our findings reveal that diversified selection pressure curtails the selection of resistance in naïve populations and those with low frequencies of single resistance. Increasing the number of modes of action most effectively delays resistance development, surpassing the increase in the number of fungicides, fungicide choice based on resistance risk, and temporal variation in fungicide exposure. However, this approach favours generalism in the evolved populations. The prior presence of multiple resistant isolates and their subsequent selection in populations override the effects of diversity in management strategies, thereby invalidating any universal ranking. Therefore, the initial resistance composition must be specifically considered in sustainable resistance management to address real-world field situations.


Assuntos
Farmacorresistência Fúngica , Fungicidas Industriais , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Pestic Biochem Physiol ; 200: 105815, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582573

RESUMO

Fusarium graminearum is an important fungal pathogen causing Fusarium head blight (FHB) in wheat and other cereal crops worldwide. Due to lack of resistant wheat cultivars, FHB control mainly relies on application of chemical fungicides. Both fludioxonil (a phenylpyrrole compound) and phenamacril (a cyanoacrylate fungicide) have been registered for controlling FHB in China, however, fludioxonil-resistant isolates of F. graminearum have been detected in field. To evaluate the potential risk of dual resistance of F. graminearum to both compounds, fludioxonil and phenamacril dual resistant (DR) mutants of F. graminearum were obtained via fungicide domestication in laboratory. Result showed that resistance of the DR mutants to both fludioxonil and phenamacril were genetically stable after sub-cultured for ten generations or stored at 4 °C for 30 days on fungicide-free PDA. Cross-resistance assay showed that the DR mutants remain sensitive to other groups of fungicides, including carbendazim, tebuconazole, pydiflumetofen, and fluazinam. In addition, the DR mutants exhibited defects in mycelia growth, conidiation, mycotoxin deoxynivalenol (DON) production, and virulence Moreover, the DR mutants displayed increased sensitivity to osmotic stress. Sequencing results showed that amino acid point mutations S217L/T in the myosin I protein is responsible for phenamacril resistance in the DR mutants. Our results indicate that mutations leading to fludioxonil and phenamacril dual resistance could result in fitness cost for F. graminearum. Our results also suggest that the potential risk of F. graminearum developing resistance to both fludioxonil and phenamacril in field could be rather low, which provides scientific guidance in controlling FHB with fludioxonil and phenamacril.


Assuntos
Dioxóis , Fungicidas Industriais , Fusarium , Pirróis , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Cianoacrilatos , Doenças das Plantas/microbiologia
3.
Appl Environ Microbiol ; 90(4): e0178223, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557086

RESUMO

Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.


Assuntos
Aspergillus fumigatus , Fungicidas Industriais , Humanos , Estados Unidos , Fungicidas Industriais/farmacologia , Azóis/farmacologia , Filogenia , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana
4.
Mycopathologia ; 189(3): 35, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637433

RESUMO

Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candida auris , Candida , Anfotericina B/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
5.
Microbiol Spectr ; 12(4): e0404223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38442003

RESUMO

Azole drugs are the main therapeutic drugs for invasive fungal infections. However, azole-resistant strains appear repeatedly in the environment, posing a major threat to human health. Several reports have shown that mitochondria are associated with the virulence of pathogenic fungi. However, there are few studies on the mechanisms of mitochondria-mediated azoles resistance. Here, we first performed mitochondrial proteomic analysis on multiple Candida species (Candida albicans, Nakaseomyces glabrata, Pichia kudriavzevii, and Candida auris) and analyzed the differentially expressed mitochondrial proteins (DEMPs) between azole-sensitive and azole-resistant Candida species. Subsequently, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology analysis, and protein-protein interaction network analysis of DEMPs. Our results showed that a total of 417, 165, and 25 DEMPs were identified in resistant C. albicans, N. glabrata, and C. auris, respectively. These DEMPs were enriched in ribosomal biogenesis at cytosol and mitochondria, tricarboxylic acid cycle, glycolysis, transporters, ergosterol, and cell wall mannan biosynthesis. The high activations of these cellular activities, found in C. albicans and C. auris (at low scale), were mostly opposite to those observed in two fermenter species-N. glabrata and P. kudriavzevii. Several transcription factors including Rtg3 were highly produced in resistant C. albicans that experienced a complex I activation of mitochondrial electron transport chain (ETC). The reduction of mitochondrial-related activities and complex IV/V of ETC in N. glabrata and P. kudriavzevii was companying with the reduced proteins of Tor1, Hog1, and Snf1/Snf4.IMPORTANCECandida spp. are common organisms that cause a variety of invasive diseases. However, Candida spp. are resistant to azoles, which hinders antifungal therapy. Exploring the drug-resistance mechanism of pathogenic Candida spp. will help improve the prevention and control strategy and discover new targets. Mitochondria, as an important organelle in eukaryotic cells, are closely related to a variety of cellular activities. However, the role of mitochondrial proteins in mediating azole resistance in Candida spp. has not been elucidated. Here, we analyzed the mitochondrial proteins and signaling pathways that mediate azole resistance in Candida spp. to provide ideas and references for solving the problem of azole resistance. Our work may offer new insights into the connection between mitochondria and azoles resistance in pathogenic fungi and highlight the potential clinical value of mitochondrial proteins in the treatment of invasive fungal infections.


Assuntos
Candida , Infecções Fúngicas Invasivas , Humanos , Candida/genética , Candida/metabolismo , Azóis/farmacologia , Azóis/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteômica , Farmacorresistência Fúngica/genética , Candida albicans/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia , Testes de Sensibilidade Microbiana
6.
Commun Biol ; 7(1): 274, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486002

RESUMO

Aspergillus fumigatus is a pathogenic fungus with a global distribution. The emergence of azole-resistant A. fumigatus (ARAf) other than the TR-mutants is a problem in Japan. Additionally, the genetic diversity of A. fumigatus strains in Japan remains relatively unknown. Here we show the diversity in the A. fumigatus strains isolated in Japan as well as the complexity in the global distribution of the pathogenic strains. First, we analyzed the genome sequences of 171 strains from Japan as well as the antifungal susceptibility of these strains. Next, we conducted a population analysis of 876 strains by combining the available genomic data for strains isolated worldwide, which were grouped in six clusters. Finally, a genome-wide association study identified the genomic loci associated with ARAf strains, but not the TR-mutants. These results highlight the complexity of the genomic mechanism underlying the emergence of ARAf strains other than the TR-mutants.


Assuntos
Aspergillus fumigatus , Azóis , Aspergillus fumigatus/genética , Azóis/farmacologia , Estudo de Associação Genômica Ampla , Japão , Farmacorresistência Fúngica/genética , Genômica
7.
Sci Rep ; 14(1): 6156, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486086

RESUMO

Black Aspergillus species are the most common etiological agents of otomycosis, and pulmonary aspergillosis. However, limited data is available on their antifungal susceptibility profiles and associated resistance mechanisms. Here, we determined the azole susceptibility profiles of black Aspergillus species isolated from the Indian environment and explored the potential resistance mechanisms through cyp51A gene sequencing, protein homology modeling, and expression analysis of selected genes cyp51A, cyp51B, mdr1, and mfs based on their role in imparting resistance against antifungal drugs. In this study, we have isolated a total of 161 black aspergilli isolates from 174 agricultural soil samples. Isolates had variable resistance towards medical azoles; approximately 11.80%, 3.10%, and 1.24% of isolates were resistant to itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), respectively. Further, cyp51A sequence analysis showed that non-synonymous mutations were present in 20 azole-resistant Aspergillus section Nigri and 10 susceptible isolates. However, Cyp51A homology modeling indicated insignificant protein structural variations because of these mutations. Most of the isolates showed the overexpression of mdr1, and mfs genes. Hence, the study concluded that azole-resistance in section Nigri cannot be attributed exclusively to the cyp51A gene mutation or its overexpression. However, overexpression of mdr1 and mfs genes may have a potential role in drug resistance.


Assuntos
Antifúngicos , Aspergilose , Antifúngicos/farmacologia , Azóis/farmacologia , Aspergilose/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica/genética , Aspergillus/metabolismo , Mutação , Expressão Gênica
8.
Sci Rep ; 14(1): 6285, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491078

RESUMO

Resistance to fungicides is a global challenge as target proteins under selection can evolve rapidly, reducing fungicide efficacy. To manage resistance, detection technologies must be fast and flexible enough to cope with a rapidly increasing number of mutations. The most important agricultural fungicides are azoles that target the ergosterol biosynthetic enzyme sterol 14α-demethylase (CYP51). Mutations associated with azole resistance in the Cyp51 promoter and coding sequence can co-occur in the same allele at different positions and codons, increasing the complexity of resistance detection. Resistance mutations arise rapidly and cannot be detected using traditional amplification-based methods if they are not known. To capture the complexity of azole resistance in two net blotch pathogens of barley we used the Oxford Nanopore MinION to sequence the promoter and coding sequence of Cyp51A. This approach detected all currently known mutations from biologically complex samples increasing the simplicity of resistance detection as multiple alleles can be profiled in a single assay. With the mobility and decreasing cost of long read sequencing, we demonstrate this approach is broadly applicable for characterizing resistance within known agrochemical target sites.


Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Azóis , Ascomicetos/metabolismo , Mutação , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
9.
Mycopathologia ; 189(2): 29, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483637

RESUMO

The emerging pathogen Trichophyton indotineae, often resistant to terbinafine (TRB), is known to cause severe dermatophytoses such as tinea corporis and tinea cruris. In order to achieve successful treatment for these infections, insight in the resistance profile of T. indotineae strains and rapid, reliable identification is necessary. In this research, a screening medium was tested on T. indotineae strains (n = 20) as an indication tool of TRB resistance. The obtained results were confirmed by antifungal susceptibility testing (AST) for TRB following the in vitro broth microdilution reference method. Additionally, AST was performed for eight other antifungal drugs: fluconazole, itraconazole, voriconazole, ketoconazole, griseofulvin, ciclopirox olamine, naftifine and amorolfine. Forty-five percent of the strains were confirmed to be resistant to terbinafine. The TRB resistant strains showed elevated minimal inhibitory concentration values for naftifine and amorolfine as well. DNA sequencing of the squalene epoxidase-encoding gene showed that TRB resistance was a consequence of missense point mutations in this gene, which led to amino acid substitutions F397L or L393F. MALDI-TOF MS was used as a quick, accurate identification tool for T. indotineae, as it can be challenging to distinguish it from closely related species such as Trichophyton mentagrophytes or Trichophyton interdigitale using morphological characteristics. While MALDI-TOF MS could reliably identify ≥ 95% of the T. indotineae strains (depending on the spectral library), it could not be used to successfully distinguish TRB susceptible from TRB resistant strains.


Assuntos
Alilamina/análogos & derivados , Antifúngicos , Arthrodermataceae , Terbinafina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trichophyton/genética , Arthrodermataceae/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética
10.
Diagn Microbiol Infect Dis ; 109(1): 116242, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452558

RESUMO

Recurrent vulvovaginal candidiasis (RVVC) due to fluconazole resistance in Candida albicans isolates causes a wide range of complications. A number of 63 Candida albicans isolates obtained from vulvovaginal candidiasis (VVC) were identified by Internal Transcribed Spacer-Restriction Fragment Length Polymorphism (ITS-RFLP). Antifungal susceptibility testing was performed by broth microdilution method according to the CLSI protocol. The role of CDR1 and MDR1 genes in progress of VVC to RVVC was examined and the activity of virulence-related enzymes was assessed. Candida albicans was diagnosed in 62.4 % cases, of which 22.2 % were confirmed as RVVC. Voriconazole was the most active drug among five tested antifungals. The mean expression level of CDR1 and MDR1 was higher in RVVC isolates compared to multidrug azole-resistant VVC isolates. Our results demonstrated that the expression of CDR1 and MDR1 and the level of phospholipase and proteinase activities could be quite important to induce fluconazole resistance in C. albicans and to progress of VVC to become RVVC in involved patients.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Candidíase Vulvovaginal/tratamento farmacológico , Candida albicans , Fluconazol/farmacologia , Regulação para Cima , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana
11.
mBio ; 15(4): e0007224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501869

RESUMO

Recent epidemiological studies documented an alarming increase in the prevalence of echinocandin-resistant (ECR) Candida glabrata blood isolates. ECR isolates are known to arise from a minor subpopulation of a clonal population, termed echinocandin persisters. Although it is believed that isolates with a higher echinocandin persistence (ECP) are more likely to develop ECR, the implication of ECP needs to be better understood. Moreover, replacing laborious and time-consuming traditional approaches to determine ECP levels with rapid, convenient, and reliable tools is imperative to advance our understanding of this emerging concept in clinical practice. Herein, using extensive ex vivo and in vivo systemic infection models, we showed that high ECP isolates are less effectively cleared by micafungin treatment and exclusively give rise to ECR colonies. Additionally, we developed a flow cytometry-based tool that takes advantage of a SYTOX-based assay for the stratification of ECP levels. Once challenged with various collections of echinocandin-susceptible blood isolates, our assay reliably differentiated ECP levels in vitro and predicted ECP levels in real time under ex vivo and in vivo conditions when compared to traditional methods relying on colony-forming unit counting. Given the high and low ECP predictive values of 92.3% and 82.3%, respectively, our assay showed a high agreement with traditional approach. Collectively, our study supports the concept of ECP level determination in clinical settings and provides a robust tool scalable for high-throughput settings. Application of this tool facilitates the interrogation of mutant and drug libraries to further our understanding of persister biology and designing anti-persister therapeutics. IMPORTANCE: Candida glabrata is a prevalent fungal pathogen able to replicate inside macrophages and rapidly develop resistance against frontline antifungal echinocandins. Multiple studies have shown that echinocandin resistance is fueled by the survival of a small subpopulation of susceptible cells surviving lethal concentrations of echinocandins. Importantly, bacterial pathogens that exhibit high antibiotic persistence also impose a high burden and generate more antibiotic-resistant colonies. Nonetheless, the implications of echinocandin persistence (ECP) among the clinical isolates of C. glabrata have not been defined. Additionally, ECP level determination relies on a laborious and time-consuming method, which is prone to high variation. By exploiting in vivo systemic infection and ex vivo models, we showed that C. glabrata isolates with a higher ECP are associated with a higher burden and more likely develop echinocandin resistance upon micafungin treatment. Additionally, we developed an assay that reliably determines ECP levels in real time. Therefore, our study identified C. glabrata isolates displaying high ECP levels as important entities and provided a reliable and convenient tool for measuring echinocandin persistence, which is extendable to other fungal and bacterial pathogens.


Assuntos
Candida glabrata , Equinocandinas , Equinocandinas/farmacologia , Candida glabrata/genética , Micafungina/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antibacterianos/farmacologia
12.
Appl Environ Microbiol ; 90(4): e0001724, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534143

RESUMO

The emergence of azole-resistant Aspergillus fumigatus (ARAf) across the world is an important public health concern. We sought to determine if propiconazole, a demethylase inhibitor (DMI) fungicide, exerted a selective pressure for ARAf in a tomato production environment following multiple exposures to the fungicide. A tomato field trial was established in 2019 and propiconazole was applied weekly until harvest. Soil, leaf, and fruit (when present) samples were collected at baseline and after each propiconazole application. A. fumigatus isolates (n, 178) were recovered and 173 were tested for susceptibility to itraconazole, posaconazole, voriconazole, and propiconazole in accordance with CLSI M38 guidelines. All the isolates were susceptible to medical triazoles and the propiconazole MIC ranged from 0.25 to 8 mg/L. A linear regression model was fitted that showed no longitudinal increment in the log2-fold azole MIC of the isolates collected after each propiconazole exposure compared to the baseline isolates. AsperGenius real-time multiplex assay ruled out TR34/L98H and TR46/Y121F/T289A cyp51A resistance markers in these isolates. Sequencing of a subset of isolates (n, 46) demonstrated widespread presence of F46Y/M172V/E427K and F46Y/M172V/N248T/D255E/E427K cyp51A mutations previously associated with reduced susceptibility to triazoles. IMPORTANCE: The agricultural use of azole fungicides to control plant diseases has been implicated as a major contributor to ARAf infections in humans. Our study did not reveal imposition of selection pressure for ARAf in a vegetable production system. However, more surveillance studies for ARAf in food crop production and other environments are warranted in understanding this public and One Health issue.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Humanos , Aspergillus fumigatus/genética , Azóis/farmacologia , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Farmacorresistência Fúngica/genética , Triazóis/farmacologia , Fungicidas Industriais/farmacologia , Verduras , Testes de Sensibilidade Microbiana
13.
Mycoses ; 67(3): e13704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429226

RESUMO

BACKGROUND: Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used. However, in recent years, a number of azole-resistant strains have been described. Their mechanisms of resistance are currently poorly studied. OBJECTIVE: The aim of this study was consequently to understand the mechanisms of azole resistance in several clinical isolates of M. guilliermondii. METHODS: Ten isolates of M. guilliermondii and the ATCC 6260 reference strain were studied. MICs of azoles were determined first. Whole genome sequencing of the isolates was then carried out and the mutations identified in ERG11 were expressed in a CTG clade yeast model (C. lusitaniae). RNA expression of ERG11, MDR1 and CDR1 was evaluated by quantitative PCR. A phylogenic analysis was developed and performed on M. guilliermondii isolates. Lastly, in vitro experiments on fitness cost and virulence were carried out. RESULTS: Of the ten isolates tested, three showed pan-azole resistance. A combination of F126L and L505F mutations in Erg11 was highlighted in these three isolates. Interestingly, a combination of these two mutations was necessary to confer azole resistance. An overexpression of the Cdr1 efflux pump was also evidenced in one strain. Moreover, the three pan-azole-resistant isolates were shown to be genetically related and not associated with a fitness cost or a lower virulence, suggesting a possible clonal transmission. CONCLUSION: In conclusion, this study identified an original combination of ERG11 mutations responsible for pan-azole-resistance in M. guilliermondii. Moreover, we proposed a new MLST analysis for M. guilliermondii that identified possible clonal transmission of pan-azole-resistant strains. Future studies are needed to investigate the distribution of this clone in hospital environment and should lead to the reconsideration of the treatment for this species.


Assuntos
Azóis , Farmacorresistência Fúngica , Saccharomycetales , Humanos , Azóis/farmacologia , Tipagem de Sequências Multilocus , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Mutação , Testes de Sensibilidade Microbiana , Fluconazol/farmacologia
14.
Pestic Biochem Physiol ; 199: 105786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458686

RESUMO

Ipconazole is a broad-spectrum triazole fungicide that is highly effective against Fusarium pseudograminearum. However, its risk of developing resistance and mechanism are not well understood in F. pseudograminearum. Here, the sensitivities of 101 F. pseudograminearum isolates to ipconazole were investigated, and the average EC50 value was 0.1072 µg/mL. Seven mutants resistant to ipconazole were obtained by fungicide adaption, with all but one showing reduced fitness relative to the parental isolates. Cross-resistance was found between ipconazole and mefentrifluconazole and tebuconazole, but none between ipconazole and pydiflumetofen, carbendazim, fludioxonil, or phenamacril. In summary, these findings suggest that there is a low risk of F. pseudograminearum developing resistance to ipconazole. Additionally, a point mutation, G464S, was seen in FpCYP51B and overexpression of FpCYP51A, FpCYP51B and FpCYP51C was observed in ipconazole-resistant mutants. Assays, including transformation and molecular docking, indicated that G464S conferred ipconazole resistance in F. pseudograminearum.


Assuntos
Fungicidas Industriais , Fusarium , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Fusarium/genética , Desmetilação , Doenças das Plantas
15.
Mycoses ; 67(2): e13708, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404204

RESUMO

BACKGROUND: Terbinafine, an allylamine antifungal, is crucial for treating dermatophytosis by inhibiting squalene epoxidase (SQLE) in the ergosterol biosynthetic pathway. However, resistance is emerging, particularly in India and Southeast Asia, but reports of resistance spread worldwide. Despite this, comprehensive studies on terbinafine resistance in Trichophyton are still limited. OBJECTIVES: This research aimed to determine the prevalence of terbinafine resistance in the Czech Republic, with a focus on Trichophyton rubrum and Trichophyton mentagrophytes, and investigate the underlying molecular mechanisms. PATIENTS/METHODS: A total of 514 clinical strains of T. rubrum and 240 T. mentagrophytes collected from four Czech clinical institutions were screened for terbinafine resistance. Molecular investigations included DNA sequencing, specifically the ITS rDNA region and SQLE gene, as well as antifungal susceptibility testing following EUCAST guidelines. RESULTS: While no resistance was observed in T. rubrum, 2.5% of T. mentagrophytes strains exhibited resistance, marked by the F397L mutation in SQLE. Notably, resistance surged from 1.2% in 2019 to 9.3% in 2020 but reverted to 0% in 2021. All resistant strains were identified as T. mentagrophytes var. indotineae. Resistant strains exhibited high MICs for terbinafine (≥4 mg L-1 ) but low MICs to the other seven antifungals tested except for fluconazole. CONCLUSIONS: This study highlights the emergence of terbinafine-resistant T. mentagrophytes strains in the Czech Republic, with the F397L mutation being pivotal. Due to the relatively low resistance level, the current guidelines for dermatomycosis treatment in the Czech Republic remain effective, but ongoing surveillance is essential for timely adaptations if resistance patterns change.


Assuntos
Antifúngicos , Arthrodermataceae , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , República Tcheca/epidemiologia , Estudos Prospectivos , Farmacorresistência Fúngica/genética , Arthrodermataceae/genética , Trichophyton , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase/genética
16.
Antimicrob Agents Chemother ; 68(4): e0162023, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38385701

RESUMO

Sporothrix brasiliensis is an emerging zoonotic fungal pathogen that can be difficult to treat. Antifungal susceptibility testing was performed on the mold phase of a convenience sample of 61 Sporothrix spp. isolates from human and cat sporotrichosis cases in Brazil using the Clinical and Laboratory Standards Institute standard M38. A bimodal distribution of azole susceptibility was observed with 50% (28/56) of S. brasiliensis isolates showing elevated itraconazole minimum inhibitory concentrations ≥16 µg/mL. Phylogenetic analysis found the in vitro resistant isolates were not clonal and were distributed across three different S. brasiliensis clades. Single nucleotide polymorphism (SNP) analysis was performed to identify potential mechanisms of in vitro resistance. Two of the 28 resistant isolates (MIC ≥16 mg/L) had a polymorphism in the cytochrome P450 gene, cyp51, corresponding to the well-known G448S substitution inducing azole resistance in Aspergillus fumigatus. SNPs corresponding to other known mechanisms of azole resistance were not identified in the remaining 26 in vitro resistant isolates.


Assuntos
Sporothrix , Esporotricose , Humanos , Antifúngicos/farmacologia , Azóis/farmacologia , Brasil , Filogenia , Itraconazol/farmacologia , Esporotricose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética
17.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308518

RESUMO

Candida glabrata is the most common non-albicans Candida species that causes vulvovaginal candidiasis (VVC). Given the intrinsically low susceptibility of C. glabrata to azole drugs, investigations into C. glabrata prevalence, fungal susceptibility profile, and molecular epidemiology are necessary to optimise the treatment of VVC. This molecular epidemiological study was conducted to determine antifungal drug profile, single nucleotide polymorphisms (SNPs) associated with phenotypic antifungal resistance and epidemic diversity of C. glabrata isolates from women with VVC in Namibia. Candida glabrata isolates were identified using phenotypic and molecular methods. Antifungal susceptibility of strains was determined for fluconazole, itraconazole, amphotericin B, and anidulafungin. Whole genome sequencing was used to determine SNPs in antifungal resistance genes and sequence type (ST) allocation. Among C. glabrata isolates, all (20/20; 100%) exhibited phenotypic resistance to the azole class antifungal drug, (fluconazole), and phenotypic susceptibility to the polyene class (amphotericin B), and the echinocandins (anidulafungin). Non-synonymous SNPs were identified in antifungal resistance genes of all fluconazole-resistant C. glabrata isolates including ERG6 (15%), ERG7 (15%), CgCDR1 (25%), CgPDR1 (60%), SNQ2 (10%), FKS1 (5.0%), FKS2 (5.0%), CgFPS1 (5.0%), and MSH2 (15%). ST15 (n = 8/20, 40%) was predominant. This study provides important insight into phenotypic and genotypic antifungal resistance across C. glabrata isolates from women with VVC in Namibia. In this study, azole resistance is determined by an extensive range of SNPs, while the observed polyene and echinocandin resistance-associated SNPs despite phenotypic susceptibility require further investigation.


Candida glabrata is inherently resistant to azole drugs. In this study, we identified a clone that was predominant in women with vulvovaginal candidiasis in Namibia, and that harboured various mutations in resistance-associated genes. This study provides important insight into antifungal resistance across C. glabrata isolates in a sub-Sahara African setting.


Assuntos
Antifúngicos , Candidíase Vulvovaginal , Feminino , Humanos , Antifúngicos/farmacologia , Candida glabrata , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/veterinária , Fluconazol , Anfotericina B , Antibacterianos , Anidulafungina , Epidemiologia Molecular , Namíbia/epidemiologia , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana , Equinocandinas , Azóis , Polienos , Farmacorresistência Fúngica/genética
18.
mBio ; 15(4): e0026324, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38407058

RESUMO

Azoles are the primary antifungal drugs used to treat infections caused by Aspergillus fumigatus. However, the emergence of azole resistance in A. fumigatus has become a global health concern despite the low proportion of resistant isolates in natural populations. In bacteria, antibiotic resistance incurs a fitness cost that renders strains less competitive in the absence of antibiotics. Consequently, fitness cost is a key determinant of the spread of resistant mutations. However, the cost of azole resistance and its underlying causes in A. fumigatus remain poorly understood. In this observation, we revealed that the 10 out of 15 screened azole-resistant isolates, which possessed the most common azole-targeted cyp51A mutations, particularly the presence of tandem repeats in the promoter region, exhibit fitness cost when competing with the susceptible isolates in azole-free environments. These results suggest that fitness cost may significantly influence the dynamics of azole resistance, which ultimately contributes to the low prevalence of azole-resistant A. fumigatus isolates in the environment and clinic. By constructing in situ cyp51A mutations in a parental azole-susceptible strain and reintroducing the wild-type cyp51A gene into the azole-resistant strains, we demonstrated that fitness cost is not directly dependent on cyp51A mutations but is instead associated with the evolution of variable mutations related to conidial germination or other unknown development-related processes. Importantly, our observations unexpectedly revealed that some azole-resistant isolates showed no detectable fitness cost, and some even exhibited significantly increased competitive fitness in azole-free environments, highlighting the potential risk associated with the prevalence of these isolates. IMPORTANCE: Azole resistance in the human fungal pathogen Aspergillus fumigatus presents a global public health challenge. Understanding the epidemic trends and evolutionary patterns of azole resistance is critical to prevent and control the spread of azole-resistant isolates. The primary cause is the mutation of the drug target 14α-sterol-demethylase Cyp51A, yet its impact on competitive ability remains uncertain. Our competition assays revealed a diverse range of fitness outcomes for environmental and clinical cyp51A-mutated isolates. We have shown that this fitness cost is not reliant on cyp51A mutations but might be linked to unknown mutations induced by stress conditions. Among these isolates, the majority displayed fitness costs, while a few displayed enhanced competitive ability, which may have a potential risk of spread and the need to closely monitor these isolates. Our observation reveals the variation in fitness costs among azole-resistant isolates of A. fumigatus, highlighting the significant role of fitness cost in the spread of resistant strains.


Assuntos
Aspergillus fumigatus , Azóis , Humanos , Azóis/farmacologia , Proteínas Fúngicas/genética , Antifúngicos/farmacologia , Mutação , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
19.
PLoS One ; 19(2): e0298724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38377103

RESUMO

Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.


Assuntos
Candida albicans , Fluconazol , Humanos , Fluconazol/farmacologia , Etanol/farmacologia , Variações do Número de Cópias de DNA , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética
20.
Med Mycol J ; 65(1): 13-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417882

RESUMO

In this study, we analyzed Aspergillus fumigatus short tandem repeat patterns of 106 strains isolated from the outdoor air, clinical specimens, and king penguins (Aptenodytes patagonicus) with aspergillosis in Japan, and compared them with those of 668 strains from AfumID (including six isolates from Japan). The results showed that the isolates were classified into three major groups. Group II contained most of the azole-resistant strains with 34- and 46-bp tandem repeats in cyp51A promoter. As in our previous study, OKH50 and Env1 strains were classified in Group II. Most of the azole-susceptible strains obtained in Japan were classified in Group III.


Assuntos
Aspergillus fumigatus , Azóis , Azóis/farmacologia , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Japão , Farmacorresistência Fúngica/genética , Repetições de Microssatélites , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...